- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Arellano, A (1)
-
Matthews, Macy (1)
-
McManus, JF (1)
-
Pallone, CT (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Climate cycles following the mid-Pleistocene transition include the coldest and longest glaciations of the Quaternary, punctuated by repeated rapid climate oscillations and sharp transitions into exceptionally warm, atmospheric CO₂-rich interglacial intervals. Such dramatic climate shifts reflect major reorganizations of the Earth system, with complex feedbacks between North Atlantic ice sheets and ocean–atmosphere carbon cycling believed to have played a central role in the pacing and amplitude of past climate variability. Yet, the response of the deep-ocean, the Earth’s largest reservoir of exchangeable carbon, to abrupt climate change remains elusive, posing a significant challenge to our understanding of the relationship between deep-ocean circulation and past, present, and future climate changes. The recently recovered sedimentary sequence from International Ocean Discovery Program Site U1587 (37°35′N, 10°22′W, 3479n meters below sea level [mbsl]), positioned in a mixing zone of northernand southern-sourced deep waters, offers a valuable archive for reconstructing orbital- to millennial-scale variations in climate and deepocean structure. This study presents new, high-resolution (~1 kyr) benthic foraminifera δ¹⁸O and δ¹³C records from Site U1587, spanning ~ 800 - 300 ka, with a focus on intense glaciations (Marine Isotope Stage [MIS] 16, 12, 10) and subsequent deglaciations (MIS 15, 11, 9). The U1587 δ¹⁸O record was aligned to the established chronology of the nearby Site U1385 (37°34′N, 10°08′W, 2578 mbsl), providing a refined age model for Site U1587 and enabling calculation of vertical δ¹³C gradients across the water column. Site U1587 consistently recorded more negative δ¹³C than the shallower Site U1385, with an average offset of –0.455‰ overall. The vertical δ¹³C gradient between sites is most pronounced during glacial intervals, reaching –1.64‰ at ~465 ka during MIS 12, and is notably reduced during interglacials, with an average of –0.264‰ in MIS 11. These results suggest enhanced deep-ocean stratification and carbon storage during intense glaciations, while the subsequent gradient collapse during deglaciations underscores the link between abrupt changes in deep-ocean circulation and rapid climate transitions into interglacial states.more » « lessFree, publicly-accessible full text available December 14, 2026
An official website of the United States government
