skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Arellano, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Climate cycles following the mid-Pleistocene transition include the coldest and longest glaciations of the Quaternary, punctuated by repeated rapid climate oscillations and sharp transitions into exceptionally warm, atmospheric CO₂-rich interglacial intervals. Such dramatic climate shifts reflect major reorganizations of the Earth system, with complex feedbacks between North Atlantic ice sheets and ocean–atmosphere carbon cycling believed to have played a central role in the pacing and amplitude of past climate variability. Yet, the response of the deep-ocean, the Earth’s largest reservoir of exchangeable carbon, to abrupt climate change remains elusive, posing a significant challenge to our understanding of the relationship between deep-ocean circulation and past, present, and future climate changes. The recently recovered sedimentary sequence from International Ocean Discovery Program Site U1587 (37°35′N, 10°22′W, 3479n meters below sea level [mbsl]), positioned in a mixing zone of northernand southern-sourced deep waters, offers a valuable archive for reconstructing orbital- to millennial-scale variations in climate and deepocean structure. This study presents new, high-resolution (~1 kyr) benthic foraminifera δ¹⁸O and δ¹³C records from Site U1587, spanning ~ 800 - 300 ka, with a focus on intense glaciations (Marine Isotope Stage [MIS] 16, 12, 10) and subsequent deglaciations (MIS 15, 11, 9). The U1587 δ¹⁸O record was aligned to the established chronology of the nearby Site U1385 (37°34′N, 10°08′W, 2578 mbsl), providing a refined age model for Site U1587 and enabling calculation of vertical δ¹³C gradients across the water column. Site U1587 consistently recorded more negative δ¹³C than the shallower Site U1385, with an average offset of –0.455‰ overall. The vertical δ¹³C gradient between sites is most pronounced during glacial intervals, reaching –1.64‰ at ~465 ka during MIS 12, and is notably reduced during interglacials, with an average of –0.264‰ in MIS 11. These results suggest enhanced deep-ocean stratification and carbon storage during intense glaciations, while the subsequent gradient collapse during deglaciations underscores the link between abrupt changes in deep-ocean circulation and rapid climate transitions into interglacial states. 
    more » « less
    Free, publicly-accessible full text available December 14, 2026